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Turbulent mixed convection flow and heat transfer in a shallow enclosure with and without partitions
and with a series of block-like heat generating components is studied numerically for a range of Reynolds
and Grashof numbers with a time-dependent formulation. The flow and temperature distributions are
taken to be two-dimensional. Regions with the same velocity and temperature distributions can be
identified assuming repeated placement of the blocks and fluid entry and exit openings at regular
distances, neglecting the end wall effects. One half of such module is chosen as the computational
domain taking into account the symmetry about the vertical centreline. The mixed convection inlet
velocity is treated as the sum of forced and natural convection components, with the individual
components delineated based on pressure drop across the enclosure. The Reynolds number is based on
forced convection velocity. Turbulence computations are performed using the standard k–ε model and
the Launder–Sharma low-Reynolds number k–ε model. The results show that higher Reynolds numbers
tend to create a recirculation region of increasing strength in the core region and that the effect of
buoyancy becomes insignificant beyond a Reynolds number of typically 5 × 105. The Euler number in
turbulent flows is higher by about 30 per cent than that in the laminar regime. The dimensionless
inlet velocity in pure natural convection varies as Gr1/3. Results are also presented for a number of
quantities of interest such as the flow and temperature distributions, Nusselt number, pressure drop and
the maximum dimensionless temperature in the block, along with correlations.

© 2008 Elsevier Masson SAS. All rights reserved.
1. Introduction

In general, in any forced convection heat transfer situation,
buoyancy effects are always present and interact with the forced
flow effects. If the buoyancy effect is smaller, forced convection
tends to predominate and if the buoyancy is larger, the heat trans-
fer is dominated by natural convection. When there is a significant
interaction between forced and free convection effects, the heat
transfer mechanism is called combined free-forced or mixed con-
vection. In this case both the Reynolds and the Grashof numbers
become important parameters. Mixed convection in enclosures is
currently receiving increasing attention in the literature.

In a previous paper [1], the results of a numerical study on the
laminar mixed convection in a shallow enclosure with a series of
block-like heat generating components are reported for a range of
Reynolds and Grashof numbers along with a summary of the im-
portant previous work done mostly in the area of laminar mixed
convection in enclosures. In the literature review presented here,
attention is focused mostly on the work carried out in the area
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of turbulent forced or mixed enclosure convection which has rele-
vance to various applications like ventilation and air-conditioning,
contaminant removal, cold stores and electronics cooling.

The review article by Linden [2] presents a summary of various
important investigations in the area of natural ventilation of build-
ings. The flow pattern was shown to be governed by the exchange
between the interior space and the external ambient.

Nielsen et al. [3] investigated the interaction of buoyancy cre-
ated due to human occupancy with forced air circulation in air-
conditioned rooms with a uniform heat flux boundary condition
on the floor. Primitive variable calculations with steady state equa-
tions and with a high-Reynolds number k–ε model of turbulence
are performed. It was found that higher values of Archimedes
number create undesirable draft in occupied zone. Nielsen [4] de-
termined the distribution of contaminants like welding smoke in a
two-dimensional ventilated enclosure with a side inlet at the top
of a vertical wall and a side outlet at the bottom of the oppos-
ing vertical wall. The variation of the jet penetration length with
Archimedes number presented in this study serves as a guideline
for air-conditioning designers.

Lage and Bejan [5] performed a numerical analysis of turbu-
lent mass transport in a slot ventilated cavity with a low Reynolds
number k–ε turbulence model and presented correlations for the
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Nomenclature

a thermal diffusivity of the fluid . . . . . . . . . . . . . . . m−2 s−1

Ar Archimedes number, = Gr/Re2

cp constant pressure specific heat capacity of the
fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

cs specific heat capacity of the solid . . . . . . . . . J kg−1 K−1

cμ, cε1, cε2, cε3 various constants in Eq. (7)
Dk destruction of turbulent kinetic energy . . . . . . . m2 s−3

E destruction of turbulent dissipation rate . . . . . . m2 s−4

Eu Euler number, = �p∗/Re2

fμ, f1, f2 various constants in Eq. (7)
g gravitational acceleration . . . . . . . . . . . . . . . . . . . . . . . m s−2

Gk turbulent production by buoyancy . . . . . . . . . . . . m2 s−3

Gr Grashof number, = gβ�T H3/ν2

H height of the enclosure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
H1 height of the heat generating block . . . . . . . . . . . . . . . . m
k turbulent kinetic energy . . . . . . . . . . . . . . . . . . . . . . . m2 s−2

Li (i = 1–4) various dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Nu Nusselt number
p excess pressure over the hydrostatic . . . . . . . . . . . . . . . Pa
Pk turbulent shear production . . . . . . . . . . . . . . . . . . . . m2 s−3

Pr Prandtl number, = ν/a
Q̇ v volumetric heat generation rate in the solid . . W m−3

rp, rT parameters for comparison
Ra Rayleigh number, = Gr Pr
Re Reynolds number, = v in,fc H/ν
Sε yap correction source term . . . . . . . . . . . . . . . . . . . . m2 s−4

t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
u, v velocity components in the x and y directions m s−1

u∗ friction velocity scale . . . . . . . . . . . . . . . . . . . . . . . . . . . m s−1

x, y Cartesian coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m

Greek symbols

α heat transfer coefficient . . . . . . . . . . . . . . . . . . . W m−2 K−1

β volumetric expansion coefficient of the fluid . . . . K−1

� length scale in Yoshizawa model . . . . . . . . . . . . . . . . . . . m
�+

w friction coordinate of the first mesh spacing
�p pressure drop across the enclosure . . . . . . . . . . . . . . . . Pa
�T characteristic temperature difference, = Q̇ v H2/λ . . K
�x,�y grid metrics of a computational cell . . . . . . . . . . . . . . . m
ε turbulent kinetic energy dissipation rate . . . . . m2 s−3

κ von Karman constant
λ thermal conductivity of the fluid . . . . . . . . . W m−1 K−1

λs thermal conductivity of the solid . . . . . . . . . W m−1 K−1

ν kinematic viscosity of the fluid . . . . . . . . . . . . . . . m2 s−1

ρ density of the fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

ρs density of the solid . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

σT , σk, σε turbulent Prandtl numbers for T , k and ε
ψ stream function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2 s−1

Subscripts

fc forced convection
in inlet
max maximum
nc natural convection contribution in mixed convection
pnc pure natural convection
t turbulent quantity
turb turbulizing limit
w wall

Superscript

∗ dimensionless quantity
+ wall-friction scaled quantity
ventilation efficiency. The investigation was extended in [6] to the
study of mass transport from the cavity with discrete volumetric
mass generation. The results include the effect of source location,
inlet and outlet locations and Reynolds number on the contami-
nant removal. The optimal inlet–outlet configurations for various
source locations were reported.

Murakami et al. [7] reported three-dimensional turbulent flow
and contaminant concentration computations and measurements
for ventilated rooms. Following good agreement between compu-
tations and measurements, the authors regard numerical predic-
tion of room air distribution to be a very promising technique.
Kurabuchi and Kusuda [8] predicted the air flow patterns in a room
with two windows on a vertical wall, a door in the opposing wall
and an interior draft chamber using a large-eddy simulation model.
The results were found to be in excellent agreement with their
measured values.

Representative studies focusing attention on the modeling of
turbulent mixed convection in cold storage rooms are Wang and
Touber [9], van Gerwen and van Oort [10,11] and Hoang et al. [12].

Computations of two-dimensional turbulent mixed convective
flow inside an enclosure with inlet and outlet openings situated at
the top of the left and right vertical walls and a left-wall-mounted
isoflux heat source were carried out by Papanicolaou and Jaluria
[13] for application to electronics cooling. The production of tur-
bulence at that location was predominantly due to shear. A small
amount of turbulence was generated due to buoyancy in the ther-
mal boundary layer of the heat source.

The objective of the present work is to extend the laminar en-
closure mixed convection study reported earlier [1] to analyze the
effects of turbulence on the quantities of engineering interest like
maximum dimensionless temperature and pressure drop for tur-
bulent regime. The geometry is a shallow enclosure with a series
of floor-mounted block-like heat generating components and with
multiple floor admission and ceiling extraction openings. The en-
closure can be visualized as an electronic cabinet with electronic
packages or an air-conditioned computer room.

Turbulent natural convection computations of Henkes [14] and
Henkes et al. [15] for a differentially heated square cavity with dif-
ferent k–ε models reveal that the performance of the standard k–ε
model [16] is characterized by a rapid increase in the turbulent
viscosity and heat transfer rate above a certain Rayleigh number
and that the Jones–Launder model [17] yields better heat trans-
fer predictions compared to other low-Reynolds number models,
despite the delayed transition. Papanicolaou and Belessiotis [18]
compare the performance of three low-Reynolds number models
and report that the Launder–Sharma model [19,20], which is the
Jones–Launder model with modified coefficients, is able to predict
the transition at the right location on the isoflux wall of a cylin-
drical enclosure, in which transient natural convection is taking
place at a high Rayleigh number. Hanjalic and Vasic [21] reported
turbulent heat transfer computations with Launder–Sharma model
for differentially heated enclosures, enclosures with different wall
thermal boundary conditions and for partially-divided enclosures.

Based on the aforementioned discussion, the standard k–ε
model [14,15] and the Launder–Sharma low-Reynolds number k–ε
model [19,20] (referred to as Model 1 and Model 2, respectively)
are employed in the present study. For a proper prediction of near-
wall length scales in recirculating regions, the Yap correction sug-
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Fig. 1. Physical model and coordinate system.
gested in Ince and Launder [22] is included in the turbulent kinetic
energy dissipation rate equation of Launder–Sharma model.

2. Physical model and coordinate system

The physical model, shown in Fig. 1(a), is a shallow enclosure
with repeated placement of floor mounted heat generating com-
ponents and floor admission and ceiling extraction openings. The
components and openings are deployed in such a way that, ne-
glecting end wall effects, they form a series of modules in which
flow and temperature fields are identical. One such module with a
heat generating component CDEFG (assumed to be a solid block),
floor admission openings of half width (AB, HI) on either side of
the floor and a ceiling extraction opening (KLM) is chosen for anal-
ysis and this module is shown in Fig. 1(b). The symmetry bound-
aries AN and IJ are either free boundaries (Problem 1) or solid
boundaries (Problem 2). The symmetry of the velocity and tem-
perature fields about the mid vertical plane LEP further facilitates
the choice of one half of the module domain ABCPELMNA for the
analysis. The computational domain is shown in Fig. 1(c), in which
the origin is placed at the bottom left corner with positive direc-
tion of the x-axis directed towards right and the positive direction
of the y-axis directed vertically upwards. The gravity vector is ori-
ented parallel to the y-axis with an opposite sense.

3. Mathematical formulation

The flow and temperature distributions are governed by the
time averaged continuity, Navier–Stokes, fluid and solid energy
and turbulence closure equations. The radiative heat transfer, vis-
cous heat dissipation and compressibility effects are considered to
be negligible. The working medium is air. The effect of the den-
sity variation causing the buoyancy force is taken into account
through the Oberbeck–Boussinésq approximation. Other thermo-
physical properties of the fluid and the thermophysical properties
of the solid are assumed to be independent of temperature.

3.1. Governing equations

The governing equations in dimensionless form read:

Continuity equation:

∂u∗

∂x∗ + ∂v∗

∂ y∗ = 0 (1)

Momentum equation in x∗-direction:

∂u∗

∂t∗ + ∂

∂x∗ (u∗2) + ∂

∂ y∗ (v∗u∗)

= −∂ p∗

∂x∗ + ∂

∂x∗

[
2
(
1 + ν∗

t

)∂u∗

∂x∗

]

+ ∂

∂ y∗

[(
1 + ν∗

t

)( ∂u∗

∂ y∗ + ∂v∗

∂x∗

)]
(2)

Momentum equation in y∗-direction:

∂v∗
∗ + ∂

∗ (u∗v∗) + ∂

∗ (v∗2)

∂t ∂x ∂ y
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= −∂ p∗

∂ y∗ + ∂

∂ y∗

[
2
(
1 + ν∗

t

) ∂v∗

∂ y∗

]

+ ∂

∂x∗

[(
1 + ν∗

t

)( ∂u∗

∂ y∗ + ∂v∗

∂x∗

)]
+ Gr T ∗ (3)

Energy equation in the fluid:

∂T ∗

∂t∗ + ∂

∂x∗ (u∗T ∗) + ∂

∂ y∗ (v∗T ∗)

= ∂

∂x∗

[(
1

Pr
+ ν∗

t

σT

)
∂T ∗

∂x∗

]
+ ∂

∂ y∗

[(
1

Pr
+ ν∗

t

σT

)
∂T ∗

∂ y∗

]
(4)

Energy equation in the solid:

ρ∗
s c∗

s
∂T ∗

s

∂t∗ = λ∗
s

Pr

(
∂2T ∗

s

∂x∗2
+ ∂2T ∗

s

∂ y∗2

)
+ 1

Pr
(5)

Turbulent kinetic energy equation:

∂k∗

∂t∗ + ∂

∂x∗ (u∗k∗) + ∂

∂ y∗ (v∗k∗)

= ∂

∂x∗

[(
1 + ν∗

t

σk

)
∂k∗

∂x∗

]
+ ∂

∂ y∗

[(
1 + ν∗

t

σk

)
∂k∗

∂ y∗

]

+ P∗
k + G∗

k − ε∗ + D∗
k (6)

Turbulent kinetic energy dissipation rate equation:

∂ε∗

∂t∗ + ∂

∂x∗ (u∗ε∗) + ∂

∂ y∗ (v∗ε∗)

= ∂

∂x∗

[(
1 + ν∗

t

σε

)
∂ε∗

∂x∗

]
+ ∂

∂ y∗

[(
1 + ν∗

t

σε

)
∂ε∗

∂ y∗

]

+ [
cε1 f1

(
P∗

k + cε3G∗
k

) − cε2 f2ε
∗]ε∗

k∗ + E∗ (7)

where

P∗
k = ν∗

t

[
2

(
∂u∗

∂x∗

)2

+ 2

(
∂v∗

∂ y∗

)2

+
(

∂u∗

∂ y∗ + ∂v∗

∂x∗

)2]
(8)

and

G∗
k = −ν∗

t
Gr

σT

(
∂T ∗

∂ y∗

)
(9)

The terms P∗
k and G∗

k express the rate of production of turbu-
lence by shear and buoyancy respectively. The other terms depend
upon the model and are as follows:

• Standard k–ε model (Model 1) [14,15]: ν∗
t = (cμk∗2)/ε∗ ,

cμ = 0.09, cε1 = 1.44, cε2 = 1.92, σT = 0.9, σk = 1.0, σε = 1.3,
fμ = f1 = f2 = 1.0, D∗

k = E∗ = 0.
• Launder–Sharma low Reynolds number k–ε model (Model 2)

[19,20]: ν∗
t = (cμ fμk∗2)/ε∗ , cμ = 0.09, cε1 = 1.44, cε2 = 1.92,

σT = 0.9, σk = 1.0, σε = 1.3, fμ = exp[−2.5/(1 + Ret/50)],
f1 = 1, f2 = 1.0 − exp(−Re2

t ) where Ret = k∗2/ε∗ .

D∗
k = −2

[(
∂
√

k∗
∂x∗

)2

+
(

∂
√

k∗
∂ y∗

)2]
(10)

E∗ = −2ν∗
t

[(
∂2u∗

∂ y∗2

)2

+
(

∂2 v∗

∂x∗2

)2]
(11)

Additionally, following [22], the Yap source term S∗
ε to be in-

cluded in the turbulent kinetic energy dissipation rate equa-
tion is as follows:

S∗
ε = 0.83

(
k∗1.5

ε̃∗c�∗
w

− 1

)(
k∗1.5

ε̃∗c�∗
w

)2
ε∗

k∗

ε̃∗ = ε∗ − D∗
k (12)
where c = 2.5 and �∗
w is dimensionless distance from the

wall. Compared to the original reference [22], the symbols ε̃∗
and ε∗ are interchanged here to represent the dimensionless
turbulent kinetic energy dissipation rate in both the models by
a common notation ε∗ .

Apart from Gr, Pr and Re defined in the nomenclature, the def-
initions of the dimensionless quantities appearing in the above
equations are as follows:

x∗ = x

H
, y∗ = y

H
, t∗ = tν

H2

u∗ = uH

ν
, v∗ = v H

ν
, p∗ = pH2

ρν2

k∗ = kH2

ν2
, ε∗ = εH4

ν3
, ν∗

t = νt

ν

ρ∗
s = ρs

ρ
, c∗

s = cs

cp
, λ∗

s = λs

λ

T ∗ = T − T in

�T
, �T = Q̇ v H2

λ
(13)

The relation between the average heat transfer coefficient α
based on the maximum temperature of the block and the heat
generation rate is as follows:

α(H1 + L3)(Tmax − T in) = Q̇ v H1L3 (14)

Hence the average Nusselt number is given by:

Nu ≡ αH

λ
= H∗

1 L∗
3

H∗
1 + L∗

3

1

T ∗
max

(15)

3.2. Initial and boundary conditions

The initial conditions for the problem are T ∗ = u∗ = v∗ =
k∗ = ε∗ = 0 throughout computational domain. The hydrodynamic
boundary conditions in mixed and forced convection cases for the
fluid region ABCDELMNA are zero normal gradients of normal and
tangential velocities on the symmetry boundary EL and mass im-
permeability on the solid boundaries BC, CD, DE and MN, pre-
scribed dimensionless velocity at the inlet AB with time-invariant
and rectangular profile and prescribed pressure at the exit LM.
On AN, symmetry (Problem 1) or no-slip (Problem 2) conditions
are applied. The thermal boundary conditions for the fluid re-
gion ABCDELMNA are zero dimensionless temperature at the inlet
AB, zero normal gradient of temperature on the EL and AN, zero
normal gradient of temperature at the exit LM, no temperature
jump and heat flux continuity on the solid–fluid interfaces CD and
DE and adiabatic condition on BC and MN. For the solid domain
CPEDC, adiabatic conditions are used on the boundaries CP and PE
and heat flux continuity with no temperature jump is prescribed
on CD and DE.

On solid walls (BC, CD, DE, MN), the condition k∗ = 0 is ap-
plied for all the models. For the standard k–ε model (Model 1),
the condition ε∗ = (c0.75

μ k∗1.5)/(κ�∗
w) is specified at one point

away from the solid wall where �∗
w is the distance from the solid

wall and κ = 0.41. In the computations, the first mesh spacing
expressed as a friction coordinate is in the viscous sublayer, i.e.,
�+

w < 5. For the low Reynolds number model (Model 2), ε∗ is set
to zero on the solid walls. Symmetry boundary conditions are ap-
plied on boundary EL for k∗ and ε∗ for Models 1 and 2. At the
inlet, small values of turbulent viscosity and turbulent kinetic en-
ergy (ν∗

t = 0.04,k∗/v∗2
in = 0.01) are specified to trigger the turbu-

lence. Gradients of turbulent quantities in the streamwise direction
at the outlet are set to zero. While applying boundary conditions
to turbulence equations, AN is treated as symmetry boundary for
Problem 1 and the same is treated as solid wall for Problem 2.
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Table 1
Results of code validation

Turbulent natural convection in a square cavity

Hot wall Nu (adiabatic horizontal walls)

Ra = 108 Ra = 1010 Ra = 1011

Present solution (Model 1) 33.2484 138.75 315
Present solution (Model 2) - 101.25 162.89

Markatos and Pericleous [26] (Model 1) 32.045 156.85 341$

Henkes et al. [15] (Model 1) 30.831 128.51 320.5
Henkes et al. [15] (Model 2) – – 171
Experimental correlation [14] (Nu = 0.047Ra1/3) 21.8155 101.25 218

Perfectly conducting horizontal walls (Model 1)

Nuup Nuhot ν∗
t,max

Present solution (Ra = 6 × 106) 6.375 12.41 1.08
Fraikin et al. [25] (Ra = 6 × 106) 6.339 11.75 3.19

Turbulent mixed convection in a cavity

Nu ψ∗
max ν∗

t,max

Present solution (Re = 1000, Ar = 50) (Model 1) 18.1 1.076 14.8
Present solution (Re = 1000, Ar = 50) (Model 2) 16.2 1.08 –
P & J [13] (Re = 1000, Ar = 50) (Model 1) 20.54 1.19 8.2

Present solution (Re = 2000, Ar = 12.5) (Model 1) 19.4 1.073 15.2
Present solution (Re = 2000, Ar = 12.5) (Model 2) 17.7 1.074 –
P & J [13] (Re = 2000, Ar = 12.5) (Model 1) 21.81 1.083 5.2

Model 1: Standard k–ε model, Model 2: LS Low-Re k–ε model.
$ Calculated from correlation reported in [26].
4. Solution methodology

As mentioned in Bhoite et al. [1], for mixed convection, the di-
mensionless inlet velocity v∗

in is written as:

v∗
in = Re + v∗

in,nc (16)

where the Reynolds number Re is defined as v in,fc H/ν (v in,fc being
the forced convection inlet velocity) and the dimensionless natural
convection inlet velocity v∗

in,nc is defined as v in,nc H/ν (v in,nc being
the natural convection inlet velocity in the mixed convection case).

The forced convection velocity v in,fc corresponds to the velocity
produced by the fan in isothermal flow and the natural convection
velocity v in,nc corresponds to that induced by the buoyancy ef-
fect in the presence of mixed convection. It is assumed that mixed
convection pressure drop �p∗ (difference in the average pressure
between the inlet and the outlet) produced across the enclosure is
the same as that produced by forced flow alone and that natural
convection, whether acting alone or in the presence of mixed con-
vection, being driven by buoyancy, does not produce any pressure
drop. The zero pressure drop assumption for natural convection is
applicable when the flow is inducted from and exits into atmo-
sphere or plenums which are essentially at the same pressure. The
same methodology was earlier adopted for the laminar mixed con-
vection study reported in Bhoite et al. [1].

To proceed with the solution, first the pure forced convection
problem with v∗

in = Re and Gr = 0 can be solved for various values
of Re and a correlation can be established between the pressure
drop �p∗ and Re. The mixed convection problem is then solved
for a prescribed dimensionless total inlet velocity v∗

in and Gr, and
the pressure drop �p∗ is determined. Since by assumption, the
mixed and forced convection pressure drops are the same for a
given Reynolds number, the value of Re in mixed convection can
be found using the forced convection correlation relating the pres-
sure drop and the Reynolds number. The quantity v∗

in,nc (denot-
ing the dimensionless average natural convection inlet velocity in
the mixed convection case) can be determined by subtraction, i.e.,
v∗

in,nc = v∗
in − Re.

The governing equations are solved by an implicit version of
the SMAC algorithm [23] with iterative time advancement. The
combined convection and diffusion terms are approximated by the
power-law scheme [24].

5. Validation and grid sensitivity tests

Computer programs for various models are developed for the
present problem based on the discretized governing equations for
different turbulence models. The modules of the code are used to
reproduce the results for turbulent natural convection in a differ-
entially heated square cavity, which was numerically investigated
by Fraikin et al. [25], Henkes [14], Henkes et al. [15] and Markatos
and Pericleous [26], and for the problem of turbulent mixed con-
vection in a square cavity, with an isoflux heat source, forming part
of the bottom wall of a channel, which was numerically studied
by Papanicolaou and Jaluria [13]. The results of validation reported
in Table 1 show a good agreement with published k–ε model re-
sults despite the different numerical formulations (vorticity-stream
function versus primitive), solution methodologies and minor dif-
ferences in turbulence modeling techniques used by the investiga-
tors.

The results of the grid independence tests presented in Ta-
ble 2 for λ∗

s = 10, Pr = 0.7 with the geometrical parameter val-
ues L∗

1 = 0.1, L∗
2 = 0.15, L∗

3 = 0.25, L∗
4 = 0.1, H∗

1 = 0.25, H∗ = 1
reveal that a near doubling of grid points (50 × 50 = 2500 to
60 × 75 = 4500) does not produce any significant differences in
the results. Hence a grid of 50 × 75 non-uniform mesh with larger
density of grid points near the boundaries, obtained by the use
of Roberts transformation [27], is chosen for subsequent computa-
tions as a compromise between accuracy and computing time for
Model 1. The jet inlet and outlet regions contain 10 mesh spac-
ings in the horizontal direction for Model 1. The transformation
facilitates generation of suitable meshes to capture the essential
near-wall dynamics as per the requirement of different turbulence
models, with the help of the grid stretching parameter. For in-
stance, a very fine mesh is required to implement the Yap cor-
rection with the node adjacent to the boundary deployed at a
dimensionless distance of 5×10−4; to satisfy the criteria �+

w � 0.1
applicable to first grid point away from the wall. To facilitate com-
putations with Model 2, a grid of 60 × 75 is selected with the jet



M.T. Bhoite, G.S.V.L. Narasimham / International Journal of Thermal Sciences 48 (2009) 948–963 953
Table 2
Results of grid sensitivity tests

Grid size+ Problem 2, Model 1

v∗
in = Re = 3 × 105 v∗

in = 7 × 105

Gr = 0 (FC) Gr = 1015 (MC)

Eu 100T ∗
max Eu 100T ∗

max

40 × 40 0.5040 0.3800 0.5100 0.3550
50 × 50 0.6029 0.3337 0.6453 0.2988
50 × 75 0.5694 0.2890 0.6126 0.2690
60 × 75 0.5526 0.2840 0.6253 0.2638

+ Number of control volumes in x∗ and y∗ directions, respectively. Eu = �p∗/Re2,
FC: Forced Convection, MC: Mixed Convection.

inlet and outlet regions covered with 12 spacings each in the hor-
izontal direction. Meshes finer than 60 × 75 are also tried and it is
found that more refinement did not improve the results much.

6. Results and discussion

Results are obtained for various values of Reynolds and Grashof
numbers, for λ∗

s = 10, Pr = 0.7, with the turbulence models, for the
geometrical parameter values mentioned earlier.

6.1. Pressure drop in forced convection

The variation of the Euler number (Eu = �p∗/Re2) with
Reynolds number is depicted in Fig. 2. As revealed by the figure,
there is a jump with about 30 per cent rise in friction factor as
the flow changes from laminar to turbulent regime. In [1], laminar
flow solutions for forced convection were reported for Re < 5000.
For Reynolds numbers in the range 5000 to 105, the laminar model
does not converge to a steady solution but gives oscillatory peri-
odic solutions for the range 5 × 103–104 and oscillatory aperiodic
solutions for the range 104–105. Beyond Re = 105, converged so-
lutions with laminar model could not be obtained. Moreover, tur-
bulent flow computations with Models 1 and 2 yielded oscillatory
periodic solutions in the range of Reynolds number 104–5 × 105

and 104–107, respectively.
The results obtained with the standard k–ε show that the Eu-

ler number increases rapidly after Re = 104. This behavior can be
seen in Fig. 2(a) (Problem 1) and Fig. 2(b) (Problem 2). Further, in
the range 104 < Re < 5 × 105, as mentioned earlier, the turbulent
computations yielded oscillatory solutions with non-zero turbu-
lent quantities. Fully turbulent steady solutions could be obtained
for Reynolds numbers above 5 × 105. The values of Eu plotted in
Figs. 2(a) and 2(b) for 104 < Re < 5 × 105 are the mean values.

The Launder–Sharma model predicted lesser pressure drop
compared to the standard k–ε model. Computations with Model 2
showed similar behavior for Problem 2 except that the oscillatory
state extended till Re = 107 beginning from Re = 104. Computa-
tions with and without Yap correction term have shown that the
Yap correction generally improves the convergence. However for
Problem 1, which involves free boundaries, no significant differ-
ences are obtained in the results obtained by Models 1 and 2.

Pressure drop correlations for the turbulent regime are pre-
sented in Table 3. The pressure drop for non-partitioned enclosure
(Problem 1) is higher than that for the partitioned enclosure (Prob-
lem 2) by about 25 per cent. The reason is traced to the fact that
the solid partitions create circulations at the top corners diverting
the main flow towards the outlet, while this mechanism is absent
in the case of the enclosure with free boundaries. This can be seen
from Fig. 3, in which the streamline and isotherm patterns for pure
forced convection at Re = 107 (using Model 1) are presented. Due
to the large magnitude of ψ∗ , in the streamline maps, the contour
values are shown for the dimensionless stream function divided by
Table 3
Pressure drop correlations

Correlation SEE CC Range

Problem 1, Model 1

�p∗ = 0.6029 Re2 6 × 10−5 0.999 5 × 104 � Re � 106

Problem 2, Model 1

�p∗ = 0.5058 Re2.01 0.0041 0.999 104 � Re � 106

Problem 1, Model 2

�p∗ = 0.6032 Re2 4 × 10−5 0.999 5 × 104 � Re � 106

Problem 2, Model 2

�p∗ = 0.9078 Re1.96 0.001 0.999 104 � Re � 106

SEE = Standard Error of Estimate, CC = Correlation Coefficient.

Table 4
Threshold Reynolds number (Returb) values for turbulent solutions for various Gr

Gr Returb

Problem 1 (Model 1)

0 5 × 105

1014 4.81 × 105

1015 4.56 × 105

Problem 2 (Model 1)

0 5 × 105

1010 4.5 × 105

1015 4.312 × 105

Problem 2 (Model 2)

0 107

1015 ≈ 107

a factor of 100. The isotherms are presented in the form of con-
tours of log10 T ∗ to take into account smaller values of T ∗ also.
Figs. 3(a) and 3(b) apply to Problem 1 and Problem 2, respectively.
Results with Model 2 exhibited similar contour patterns for the
stream function and temperature.

6.2. Ranges of governing parameters for turbulent regime

Based on the numerical data obtained from several runs, val-
ues of the governing parameters at which the flow turns to be
turbulent for the given geometry and for a fixed Prandtl number
(Pr = 0.7) are identified and are listed in Table 4. For Re � Returb,
significant turbulence (ν∗

t � 10) is seen in the solution. It can be
observed that the model employed influences the limiting values.

However, higher Grashof numbers lower the value of Returb
slightly due to buoyancy-induced instabilities, as can be seen from
Table 4. Turbulent solutions with Model 2 could be obtained only
for Re � 107 for any Grashof number. To see the effect of higher
Grashof number at Re = 107, computations were carried out with
Gr = 1015. Although this case was successfully computed, the pa-
rameter values themselves are on the much higher side when
considering applications like conditioned enclosures and electronic
cooling problems. Since with Model 2, the placement of the first
grid point should be such that �+

w � 0.1, there was already a
requirement for a very fine mesh at Re = 107 for the implementa-
tion of the Yap correction with the node adjacent to the boundary
deployed at a dimensionless distance of 5 × 10−4. Further grid re-
finement for still higher parameter values presented convergence
problems.

6.3. Natural convection

To solve the pure natural convection problem, the dimension-
less inlet velocity that results in zero �p∗ across the enclosure is
determined for a given Grashof number. The values of the pure
natural convection inlet velocity v∗

in,pnc are presented in Table 5.
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Fig. 2. Variation of Euler number with Reynolds number.

Fig. 3. Streamlines (left) and isotherms (right) for pure forced convection for (Re = 107). (a) Problem 1, (b) Problem 2.
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Fig. 4. Streamlines (left) and isotherms (right) for pure natural convection for (Gr = 1015) (Problem 1).
Table 5
Dimensionless natural convection inlet velocities

Gr v∗
in,pnc

Problem 1 Problem 2

1011 6.9×103 6.7× 103

1012 1.475 ×104 1.554 × 104

1013 3.2×104 3.35× 104

1014 6.87 ×104 7.5× 104

1015 1.3×105 1.558 × 105

The results are obtained for the Grashof number range 1010 � Gr �
1015. However, in this range, the oscillatory solutions are found for
both Problems 1 and 2. The solutions have not shown any signif-
icant level of turbulence with either model. The results presented
here are for time-averaged quantities corresponding to the 50 × 75
grid mentioned earlier. The results for the maximum temperature
in pure natural convection can be of help in judging the efficacy of
cooling in the mixed convection regime.

From the values presented in Table 5, it is observed that the
quantity v∗

in,pnc varies as Gr1/3. For pure natural convection prob-
lem, both the models yielded laminar reverted solutions.

Pure natural convection streamline and isotherm patterns for
ψ∗/100 and log10 T ∗ are shown in Fig. 4 for Gr = 1015 for Prob-
lem 1. For Problem 2, the flow and temperature distributions are
found to be nearly the same. Since the computations with turbu-
lent models reverted to laminar regime, no comparison is made
between Models 1 and 2. Compared to the case of forced convec-
tion, the streamlines for pure natural convection reveal that the
entering stream is bent towards the block because of the buoyancy
force, resulting in a bigger recirculation zone near the top corners.

6.4. Effect of natural convection on the inlet velocity

The dimensionless total inlet velocity v∗
in in mixed convection

is plotted against the Reynolds number (= v in,fc H/ν) in Fig. 5 for
various values of Grashof number, for Model 1 with the subfig-
ures applicable to Problems 1 and 2. For any Grashof number, it
can be seen that for lower values of Re, the quantity v∗

in is larger
than Re. This is because at lower Reynolds numbers, the buoyancy
contributes significantly to the forced flow effect, drawing extra
amount of fluid into the enclosure. It is not difficult to see that
the contribution of buoyancy to the total inlet velocity increases
with increasing Grashof number. For the range of Grashof numbers
1012–1015, the buoyancy effect is found to become negligible be-
yond a Reynolds number of 5 × 105. Thus beyond this limit, the
total inlet velocity becomes almost equal to the Reynolds number.

An idea of the relative strengths of buoyancy and inertia forces
can be obtained from the ratio v∗

in/Re = (v∗
in,nc + Re)/Re (the ra-

tio of the total inlet velocity in mixed convection to that induced
by fan). The ratio v∗

in/Re becomes ∞ for pure natural convection
(Re = 0) and unity for pure forced convection (v∗

in,nc = 0). Fig. 5

shows that v∗
in/Re begins to approach unity for Re � 5 × 105.

6.5. Streamlines and isotherms for mixed convection

The streamline and isotherm contours for pure forced and pure
natural convection are already presented in Figs. 3 and 4. Selected
streamline and isotherm maps for mixed convection are shown in
Fig. 6 (Problem 1, Gr = 1014, Model 2), Fig. 7 (Problem 2, Gr = 1014,
Model 1) and Fig. 8 (Problem 2, Gr = 1015, Model 1) with the
subfigures applicable to different Reynolds numbers. The contour
values shown are for ψ∗/100 and log10 T ∗ . The streamline and
isotherm maps for each Grashof number show the general features
of the flow and temperature fields.

By comparing Figs. 6–8 with Figs. 3 and 4, the change from nat-
ural convection dominated regime to forced convection dominated
regime can be clearly discerned. The waning off of the buoyancy
effects with increasing Re can be seen by proceeding from subfig-
ure (a) to subfigure (f) in Figs. 6–8.

The streamlines obtained in turbulent flow are found to be
qualitatively similar to those obtained for laminar flow. In case of
Problem 1 (i.e., enclosure with free boundaries), a strong recircu-
lation is observed above the top face of the block. In addition, a
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Fig. 5. Variation of the total inlet velocity with the Reynolds number for Model 1. (a) Problem 1, (b) Problem 2.
weak recirculation zone is observed at the sides of vertical faces.
For Problem 2 (fully partitioned enclosure), a recirculation zone is
observed at the top corners directly above the inlet streams. It can
be seen that buoyancy tends to deflect the fluid towards the block
by creating a low pressure zone locally.

The isotherms are clustered in the fluid region adjacent to the
solid–fluid interface because of the high solid-to-fluid thermal con-
ductivity ratio and relatively lower fluid velocities in this region.

6.6. Distribution of turbulent viscosity and kinetic energy

Fig. 9 depicts the spacewise distribution of dimensionless
turbulent kinetic energy and dimensionless turbulent viscosity
for Gr = 1015 with different subfigures applicable to different
Reynolds number and turbulence models. The quantities log10 k∗
and log10 ν∗

t are chosen for the display of contours to capture the
wide variation of these variables. Figs. 9(a) and 9(b) correspond
two different Reynolds numbers.

Results with Model 1 depicted in Figs. 9(a) and 9(b) reveal that
k∗ and ν∗

t are higher in the corners than in the core region. This
means that turbulence is originated from the high shear rate due
to flow and wall interaction. Model 1 does not predict any signifi-
cant turbulence in the recirculating region of the core.

Fig. 10 shows the spacewise distribution of dimensionless tur-
bulent kinetic energy and dimensionless turbulent viscosity for
Gr = 0, Re = 107 for Models 1 and 2. The quantities log10 k∗ and
log10 ν∗

t are chosen for the display of contours to capture the wide
variation of these variables. Figs. 10(a) and 10(b) apply to Models 1
and 2, respectively. As can be seen, Model 2 predicts turbulence in
the recirculating core while Model 1 does not. Both models show
turbulence in the vicinity of the top wall.

Fig. 11 shows profiles of u+ (= u/u∗), k+ (= k/u2∗) and ν+
t

(= νt/u∗H) against the friction coordinate �+
w (= �w u∗/ν) mea-

sured from the top wall for Gr = 0, Re = 107 at x∗ = 0.2 for Mod-
els 1 and 2. Regions near the corners are chosen for plotting since
more turbulence is developed in the corners. The corresponding
streamline and isotherm patterns for this case are depicted in
Fig. 3. Fig. 11(a) shows dimensionless wall scaled velocity profile
from y+ = 0 (wall) to y+ = 100 and the graph shows that lin-
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Fig. 6. Streamlines (left) and isotherms (right) for Gr = 1014 (Problem 1, Model 2).

Fig. 7. Streamlines (left) and isotherms (right) for Gr = 1014 (Problem 2, Model 1).
ear and log law profiles are well followed since the flow pattern
at x∗ = 0.2 (as can be seen from Fig. 3) is similar to boundary
layer flow pattern. It can be observed from Fig. 11(b) that near the
wall the turbulent kinetic energy attains a high value, i.e., there
is steep rise in k+ as the fully turbulent layer is approached from
the wall. Beyond this point, k+ rapidly decreases because the mean
shear decreases. The variation of ν+

t is slightly more complicated
in that it may have single or multiple peaks. Beyond the peaks,
the quantity ν+

t decreases rapidly. In a boundary-layer type flow,
the quantity ν+
t attains a peak and then decreases. However, in

the present problem, the near-wall flow is not of boundary-layer
type and is influenced by the recirculation zones and the flow near
the enclosure exit. The turbulence levels predicted by Model 2 are
lower than those predicted by Model 1.

It is observed that the flow in the fully partitioned enclosure
(Problem 2) has much higher turbulence than that of the free
boundary enclosure (Problem 1). The reason is that in Problem 1,
the flow entering the enclosure gives rise to a jet-like structure
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Fig. 8. Streamlines (left) and isotherms (right) for Gr = 1015 (Problem 2, Model 1).

Fig. 9. Contours of turbulent kinetic energy (left) and turbulent viscosity (right) for Problem 2, for Gr = 1015.

Fig. 10. Contours of turbulent kinetic energy (left) and turbulent viscosity (right) for Problem 2, for Re = 107; Gr = 0. (a) Model 1, (b) Model 2.
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Fig. 11. Near wall profiles of turbulent variables for Problem 2 with Model 1 and Model 2 (Re = 107; Gr = 0) at x∗ = 0.2 for Problem 2.
with lower shear compared to the wall-bounded flow in Problem 2
where high shear rate regions act as sources of turbulent produc-
tion of kinetic energy.

6.7. Maximum temperature and Nusselt number

Fig. 12 shows the variation of maximum dimensionless temper-
ature with Re and Gr, respectively for Model 1. The maximum di-
mensionless temperature decreases with increase in Grashof num-
ber. However, such a reduction does not mean that maximum di-
mensional temperature drops with a rise in the volumetric heat
generation. Rather, it indicates that the rate at which the maxi-
mum temperature increases is less compared to that in the volu-
metric heat generation rate. The maximum dimensionless temper-
ature can also be seen to decrease with an increase in Reynolds
number, barring the lower Reynolds number region where over-
heating of the block can occur.

Since the Nusselt number, by definition, is proportional to the
reciprocal of maximum dimensionless temperature, its variation is
Table 6
Comparison of T ∗

max between Models 1 and 2

Re Gr 100T ∗
max Change

(Model 1) (Model 2) (%)

5 × 105 0 0.2781 0.2919 4.96
7 × 105 0 0.2728 0.2793 2.382
7 × 105 1015 0.28 0.2863 2.25
106 0 0.2692 0.2799 3.974
106 1015 0.2674 0.2790 4.33
107 0 0.26 0.2108 23.80$

$ Model 2 switches to fully turbulent regime.

just opposite to that of T ∗
max as depicted in Fig. 13, where it can

be observed that the Nusselt number, in general, increases with
increase in Reynolds and Grashof numbers.

Values for maximum dimensionless temperature obtained with
Model 2 differ by 5 to 10 per cent from those obtained by Model 1
for v∗

in � 106. Table 6 shows the comparison of selected maximum
dimensionless temperatures obtained for Problem 2 using Mod-
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Fig. 12. Variation of maximum dimensionless temperature with Reynolds number for various Grashof numbers (Model 1).
els 1 and 2. The values obtained by the low Reynolds number
model (Model 2) are about 5 per cent higher than those obtained
by the standard k–ε model (Model 1) for Re < 107. Despite the
differences in the turbulence levels predicted by Models 1 and 2,
the difference in the maximum dimensionless temperature is not
significant for Re < 107 because adjacent to the block surface ν∗

t
is insignificant. However, the difference in T ∗

max between Model 1
and Model 2 turns out to be more than 20 per cent at Re = 107, i.e.,
when Model 2 yields a fully turbulent solution. At this Reynolds
number, the convective flow regime is dominated by forced con-
vection.

The maximum dimensionless temperature obtained for Prob-
lems 1 and 2 with the standard k–ε model, for a given value of
total inlet velocity, differs at the most by 10 per cent at lower
values of v∗

in (typically 104). The difference tends to diminish as
v∗

in increases; for instance, at v∗
in = 106, negligible difference is

observed between the maximum dimensionless temperature for
Problems 1 and 2. With either model, for Reynolds number greater
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Fig. 13. Variation of Nusselt number with Reynolds number for various Grashof numbers (Model 1).
than 5 × 105, the maximum dimensionless temperature becomes
independent of the Grashof number.

To have an estimate of the dimensional temperatures obtained
by Model 1, let the geometry represent an enclosure of height 3
m with other relative dimensions as chosen in the present study
without partitions (Problem 1). For a Grashof number of 1014, the
volumetric heat generation will be 72 W per m3 (8.1 W per me-
ter depth of the block). For this enclosure, for a v∗

in = 105, the
total dimensional inlet velocity will be 0.5 m s−1 and the fan ve-
locity turns out to be 0.25 m s−1. For a supply air temperature
of 20 ◦C, the maximum dimensional temperature comes to 96 ◦C
(with a difference of 76 ◦C between the maximum temperature
and the supply air temperature). For the same Grashof number
and dimensionless total inlet velocity, the dimensional velocities
and maximum temperature for the partitioned enclosure (Prob-
lem 2) too are almost the same. This example shows that better
cooling of the heat generating element is required by an increase
of the forced convection velocity or a decrease in the volumetric
heat generation, since an operating temperature of 96 ◦C can go
beyond the acceptable limit. The example also shows that the pa-
rameter ranges chosen are relevant to practical applications like
computer centres. The present analysis can be extended for dif-
ferent arrangements of heat source and cooling jets for resulting
into better control over maximum temperature. With Model 2, the
quantity Tmax − T in is found to be higher by about 5 per cent com-
pared to Model 1.

7. Comparison of standard and low Reynolds number models

For Problem 2, the dimensionless pressure drop obtained by
Model 2 is higher than that obtained by Model 1 for Re < 105; the
opposite is true for Re > 105. The difference in the pressure drop
can be attributed to the difference in the levels of ν∗

t predicted by
the two models.

For Problem 1, the differences between the results obtained by
Models 1 and 2 are found to be insignificant. This could be due
to the fact that solid–wall partitioning between the modules is ab-
sent in Problem 1. In the range 104 � Re � 5 × 106, T ∗

max obtained
is insensitive to the model used. At Re = 107, T ∗

max obtained by
Model 2 is significantly lower than that obtained by Model 1. The



962 M.T. Bhoite, G.S.V.L. Narasimham / International Journal of Thermal Sciences 48 (2009) 948–963
reason can be traced to the fact that at Re = 107, Model 2 shows
turbulence near the block surfaces unlike Model 1, which can also
be observed from Fig. 10. Since Model 2 produces turbulence near
the block, T ∗

max is lowered.
Table 7 lists the maximum values of k∗ and ν∗

t and their loca-
tions for various Reynolds and Grashof numbers computed with
different turbulent models. It can be inferred that with an in-
crease in Reynolds number, there is an increase in k∗

max and ν∗
t,max.

However the trend reverses with respect to the Grashof number.
Increase in Grashof number deflects the fluid from inlet to the
core region above the block due to increased buoyancy. This re-
sults in an increased size of the recirculation zones near the top
corners and a drop in the mean shear in the corner regions. Con-
sequently, near the top wall, the turbulence production is reduced
with increase in Grashof number. However, Grashof number does
not influence ν∗

t,max to the extent the Reynolds number does. This
is due to the fact that in the regions where k∗ and ν∗

t are high, the
gradients of temperature are almost zero and the buoyancy pro-
duction of turbulent kinetic energy (G∗

k ) is insignificant in these
regions. As can be expected, turbulence increases rapidly with in-
crease in Reynolds number. It is also seen that the locations of
turbulent kinetic energy maxima and turbulent viscosity maxima
are different from each other. This is attributed to the fact that
the production and dissipation of turbulent kinetic energy does not
necessarily occur at the same location. For example, the value of
ν∗

t,max for Re = 107 with Model 2 is lower that for Re = 106 com-
puted with the standard k–ε model.

8. Correlations

Correlations are constructed from the computed data for vari-
ous dimensionless quantities, namely, the pressure drop, maximum
temperature and the natural convection inlet velocity in terms of
the Reynolds and Grashof numbers and are presented in Table 8,
along with the values of the standard error of estimate and multi-

Table 7
Magnitudes and locations of the maximum turbulent viscosity and the maximum
turbulent kinetic energy (Problem 2)

Re Gr ν∗
t,max, (x∗, y∗) k∗

max, (x∗, y∗)
Model 1

5 × 105 0 289.49 (0.0064, 0.918) 4.032×1010 (0.3865,0.9983)

106 0 509.63 (0.0064, 0.93) 1.651 ×1011 (0.3865,0.9983)

107 0 1575.1 (0.3867,0.9987) 1.74 ×1013 (0.3867,0.9987)

7 × 105 1015 380.53 (0.0156, 0.93) 7.526 ×1010 (0.3865,0.9983)

7 × 105 1014 385.90 (0.0156, 0.93) 7.791 ×1010 (0.3865,0.9983)

Model 2
107 0 448.37 (0.388, 0.9994) 7.6×1012 (0.388,0.9994)
ple correlation coefficient for Model 1. Since, in the ranges relevant
to practical applications, Model 2 results are not much different
from those obtained by Model 1, separate correlations are not
given for Model 2. The standard error of estimate (referred to as
SEE )is defined as [sum the squares of error/(l − m − 1)]1/2, where
l is the number of data points, m is the number of independent
variables and l − m − 1 is the number of degrees of freedom. The
multiple correlation (referred to as CC) is defined as [1 − (sum of
squares of residuals/total sum of squares)]1/2.

To obtain an estimate of the relative strengths of buoyancy and
inertia forces in mixed convection, the ratio v∗

in/Re ≡ (v∗
in,nc +

Re)/Re (the ratio of the total inlet velocity in mixed convection to
that induced by fan) can be presented in terms of the Archimedes
number Ar (= Gr/Re2). For instance, the correlation for v∗

in,nc in the

range 0.37 � Ar � 2.5 × 105 for Problem 1 (with Model 1 results)
is:

v∗
in,nc + Re

Re
= 8.6616

Ar0.0654

Re0.46
(17)

The correlation for v∗
in/Re for Problem 2, presented in Table 8

and which has the same range of applicability, can be readily
transformed to the above form. The correlation for T ∗

max is express-
ible in terms of v∗

in. Although the Archimedes number is intro-
duced in the above correlations, for problems involving complex
geometries and heat generation such as the present one, where
the pressure drop is linked to the Reynolds number, there is need
to establish more general criteria than the Archimedes number for
the demarcation of the regimes.

For the correlations presented in Table 8, the ranges are indi-
cated in terms of Gr and Re, as they encompass all the regimes,
namely, the natural, forced and the mixed convection.

9. Conclusions

A computational study of turbulent mixed convection in a shal-
low enclosure with or without partitions and with block-like heat
generating components and inlet and outlet openings is performed
by neglecting the end effects and taking into account similar geo-
metric modules and the symmetry in the geometry. The Reynolds
number is based on the forced velocity component produced by
the fan. This gives the Reynolds number strictly its forced con-
vection attribute unlike the definitions in which the characteristic
velocity is taken as the combined natural and forced convection
components.

Steady turbulent solutions for forced convection are obtained
with standard k–ε model at Reynolds numbers higher than 5×105

and with low-Reynolds number model for Re � 107. The Euler
number at these Reynolds numbers is higher by about 30 per cent
Table 8
Correlations obtained from regression analysis

Regime Variable Correlation SEE CC Range

Problem 1, λ∗
s = 10, Model 1

FC T ∗
max 0.0379 Re−0.2 0.009 0.97 5 × 104 � Re � 106

NC v∗
in,pnc 2.022Gr0.32 0.003 0.999 1010 � Gr � 1015

NC T ∗
max 0.0191 Gr−0.056 0.012 0.993 1010 � Gr � 1015

MC v∗
in,nc 8.6616 Re0.67Gr0.0654 − Re 0.0506 0.98 104 � Re � 106

1010 � Gr � 1015

MC T ∗
max 0.0103 v∗

in
−0.1 0.0013 0.93 same as for v∗

in,nc

Problem 2, λ∗
s = 10, Model 1

FC T ∗
max 0.0354 Re−0.194 0.0091 0.97 104 � Re � 106

NC v∗
in,pnc 1.13 Gr0.35 0.002 0.999 1010 � Gr � 1015

NC T ∗
max 0.043 Gr−0.081 0.012 0.98 1010 � Gr � 1015

MC v∗
in,nc 1.218 Re0.61Gr0.15 − Re 0.0516 0.98 104 � Re � 106

1010 � Gr � 1015

MC T ∗
max 0.0143 v∗

in
−0.125 0.0027 0.95 same as for v∗

in,nc
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than that in the laminar regime. The pressure drop for the parti-
tioned geometry is less than that for the non-partitioned one due
to the corner eddies. The maximum dimensionless temperatures
obtained for the partitioned and non-partitioned enclosures are al-
most the same.

The dimensionless inlet velocity in pure natural convection
varies as Gr1/3 for the range 1010 � Gr � 1015. Computations of
pure natural convection in this range with turbulence models are
found to revert to laminar regime. The mixed convection results
revealed that above a Reynolds number of 5 × 105, the natural
convection becomes insignificant. Correlations are constructed for
estimating various dimensionless quantities of interest.
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